The impact of learner attributes and learner choice in an agent-based environment

Yanghee Kim*, Quan Wei

Department of Instructional Technology and Learning Sciences, Utah State University, 2830 Old Main Hill, Logan, UT 84321, USA

ARTICLE INFO

Article history:
Received 18 May 2010
Received in revised form 22 September 2010
Accepted 23 September 2010

Keywords:
Interactive learning environments
Human–computer interface
Pedagogical agents
Virtual reality
Secondary education

ABSTRACT

This study examined the impact of learners’ attributes (gender and ethnicity) on their choice of a pedagogical agent and the impact of the attributes and choice on their perceptions of agent affability, task-specific attitudes, task-specific self-efficacy, and learning gains. Participants were 210 high-school male and female, Caucasian and Hispanic students who worked at computer-based algebra integrated with pedagogical agents. The results indicated, first, that students preferentially chose a same-gender agent and a same-ethnicity agent. Second, males who chose an agent showed more positive attitudes toward working at the learning environment than did males who were assigned to an agent whereas females who were assigned to an agent showed more positive attitudes than did females who chose an agent. Third, Hispanic students showed more positive attitudes toward working at the learning environment than Caucasians. Fourth, females perceived the agent as significantly more affable than did males; Hispanics perceived the agent as significantly more affable than did Caucasians. Last, learner attributes and choice did not affect learning gains in the agent-based environment; rather, the participants overall significantly increased their performances after the intervention.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

With the advance of interface technology, animated digital characters have been increasingly used in applications and interested researchers from various disciplines, such as artificial intelligence (Johnson, Ricke, & Lester, 2000), educational technology (Kim & Baylor, 2006; Moreno & Mayer, 2000) and social psychology (Blascovich et al., 2002). The researchers have investigated the efficacy of the characters from the unique perspective of their disciplines. In the field of educational technology, on-screen characters are broadly identified as pedagogical agents that are defined as animated life-like characters embedded in computer-based learning environments (Johnson et al., 2000). Traditionally, social interaction is considered critical for learning and intellectual development (Lave & Wenger, 2001; Palinscar & Brown, 1984; Powell, Aebly, & Carpenter-Aebly, 2003; Vygotsky, Cole, John-Steiner, Scribner, & Souberman, 1978; Wertsch, Minick, & Arns, 1984). Therefore, it would be recommendable that a computing environment supports social interaction even when human partners are absent. A human-like pedagogical agent might play a role in that regard, simulating social presence to promote interactions between a learner and the agent (Kim & Baylor, 2007). In this sense, the presence of a pedagogical agent might be able to augment the functionality of conventional computer-based tutoring systems (Kearsley, 1993; Kim, Baylor, & Shen, 2007).

It is well documented that human–computer interaction is comparable to human-to-human interaction (Iacobelli & Cassell, 2007; Johnson, Gardner, & Wiles, 2004; Reeves & Nass, 1996). That is to say, computer users seem to interact with their computer as if it were human. In classrooms, the personal attributes of a learner and others are often considered a determining factor for the efficacy of an instructional intervention. Also, learners’ being able to choose in the learning process may engender a feeling of autonomy and empowerment, which enhances learners’ motivation and performance. Grounded in the literature in pedagogical agents, attribute similarities, and learner choice, this study examined if learners’ choice of their agent would be affected by learner/agent attribute similarities and also if learner attributes and learner choice have an impact on their affective and cognitive outcomes in an agent-based learning environment, with high-school students learning everyday school mathematics.

* Corresponding author. Tel.: +1 435 797 2653; fax: +1 435 797 2693.
E-mail addresses: yanghee.kim@usu.edu (Y. Kim), quan.wei@aggiemail.usu.edu (Q. Wei).

0360-1315/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
2. Theoretical background

2.1. Pedagogical agents

Pedagogical agents (PAs) are animated life-like characters embedded in educational applications (Johnson et al., 2000), designed to enhance a student’s engagement and learning through simulated social interaction (Kim & Baylor, 2006). In both commercial and educational applications, characters have been integrated into the interface to take advantage of natural human social affordances (Cheng & Ye, 2010; Isbister & Nass, 2000). In a conventional setting, learning is not a solo activity occurring only inside one’s mind, but is largely influenced by social interactions with others (Lave & Wenger, 2001; Palinscar & Brown, 1984; Powell et al., 2003; Vygotsky et al., 1978; Wertsch et al., 1984). In computer-based learning, therefore, the presence of a PA that simulates social and natural context seems to better engage a learner in the learning task (Gulz, 2005; Kim, Wei, Xu, Ko, & Ilieva, 2007; Lester, Towns, Callaway, Voerman, & FitzGerald, 2000; Moreno, Mayer, Spires, & Lester, 2001). With this simulated social presence, a PA might expand the functionality of conventional computer-based learning that has focused mainly on individualized, cognitive process of learning (Kearsley, 1993; Kim & Baylor, 2006). While interacting with a PA acting as a tutor (Graesser, Person, Harter, & Group, 2001) or a co-learner (Chan & Chou, 1997; Gulz & Haake, 2006), a learner may build a social and intellectual partnership with the agent.

Some studies have supported the effectiveness of PA presence in computer-based learning. For example, middle-school students who received worked-example instruction from an agent reported lower levels of perceived difficulty than did students in the control group who received the same information in text without an agent and outperformed their counterparts in both near- and far-transfer tests (Atkinson, 2002). College students who learned the human circulatory system with an agent achieved retention scores significantly higher than did their counterparts who learned the topic with on-screen text (Dunsworth & Atkinson, 2007). Both college students and 7th graders who learned how to design a plant with an agent produced significantly more correct solutions on difficult transfer problems and rated their interest in the material significantly greater than did their counterparts who learned without an agent (Moreno et al., 2001). Fifth-graders who interacted with agents generated deeper explanations in a virtual science learning environment than those who did not interact with an agent (Holmes, 2007). Children who had a PA in computer-based writing were more likely to use the program again than were children who had a traditional graphical interface (Robertson, Cross, Macleod, & Wiemer-Hastings, 2004). Kindergartners who played with the virtual peer Sam listened to Sam’s stories carefully and mimicked Sam’s linguistic styles (Ryokai, Vaucelle, & Cassell, 2003).

Being human-like, a PA is often equipped with a persona (Lester et al., 1997; Moundridou & Virvou, 2002) to better simulate human tutoring. Indeed, male and female college students consciously expect their pedagogical agent to be “knowledgeable, nice, and friendly,” consistent with their expectations of human instructors (Kim, 2007). In the PA design, human-instructional roles have been simulated, such as expert (Johnson et al., 2000), tutor (Graesser, Moreno, & Marineau, 2003), mentor (Baylor & Kim, 2005), and learning companion (Chan & Baskin, 1990; Dillenbourg & Self, 1992; Hietala & Niemirepo, 1998) or virtual peers (Kim, 2007; Ryokai et al., 2003). The use of a peer role over a tutor has become increasingly popular (Aimeur & Frasson, 1996; Burleson, 2003; Chan & Baskin, 1990; Chou, Chan, & Lin, 2003; Hietala & Niemirepo, 1998; Kim, 2007; Leelawong & Biswas, 2008; Uresti, 2000). Yet, there are a number of questions that must be answered in the design of a peer-like agent. In particular, it is unknown what type of personal attributes a designer should build into an agent to stimulate interaction and partnership building with a learner. It was not clear, before this study, that learner/PA attributes would have an influence on changing a learner’s task-specific affect and performance in agent-based learning, which requires a rather substantial examination beyond the perceptual reactions to agent appearance.

2.2. Similarities in learner/agent gender and ethnicity

The concept of attribute similarities (Bandura, 1997; Schunk, Hanson, & Cox, 1987) explains that, in classrooms, when a learner observes a social model who has similar personal characteristics (such as gender, ethnicity, age, etc.) to his/her own, the learner’s self-efficacy beliefs in the task are enhanced, and the task performance is more likely to succeed. Also, similarity-attraction theory indicates that people are more attracted to a person who is similar to them (Berscheid & Walster, 1969; Byrne & Nelson, 1965). This attraction seems to influence their interpersonal associations (with whom individuals would choose to associate) and behaviors in the real world.

The similarity-attraction is likely to mirror human–computer interaction (HCI), given that people tend to interact with computers socially and naturally (Johnson et al., 2004; Nass & Brave, 2005; Reeves & Nass, 1996). Some HCI researchers tested this expectation with matched/mismatched personalities. That is, they rendered computers different personalities: e.g., a dominant personality that initiated interactions with a user versus a submissive one that did not initiate interactions (Reeves & Nass, 1996) or an introverted personality versus an extraverted personality operationalized by linguistic styles (Isbister & Nass, 2000). The findings were contradictory. In a study, when a computer’s personality was similar to their own, college students were more attracted to, assigned greater intelligence to, and conformed more with the computer (Nass, Moon, Fogg, Reeves, & Dryer, 1995). They were more likely to give the computer credit for success and less likely to blame the computer for failure (Moon & Nass, 1998) and also, evaluated more positively the book review presented by the computer and were more likely to buy the book (Nass & Lee, 2000), compared to when there was a personality mismatch. However, in another study, college students tended to prefer to work with the computer with a complementary personality rather than the one with a similar personality (Isbister & Nass, 2000).

It is unknown how teenage students learning a required school subject would react to a similar or dissimilar pedagogical agent (PA) embedded in computer-based learning. This study was intended to resolve this. The study examined two attributes of a PA (gender and ethnicity) in the context of equity issues in education in the United States. Many scholars have documented persistent disparities in achievement and enrollment in advanced-level classes between Caucasian males and other groups of students in science and engineering, such as females and ethnic minorities (Fennema, 1990; Secada, 1992). Researchers attribute this phenomenon to social and cultural context in classroom environments. That is, the context where those subjects are taught has led these students to having less positive learning experiences, discouraging their continued intellectual pursuit in the areas (Gay, 2000; Sandler, Silverberg, & Hall, 1996). Therefore, the authors inquired into if PA-based learning could contribute to females and ethnic-minority students’ positive affect and increased
performance in computer-based mathematics learning. If the similarity-attraction would work, a similar looking PA is likely to build those students’ positive attitudes toward and self-efficacy in learning mathematics with an agent.

Further, some HCI studies have examined the effectiveness of similarity-attraction regarding ethnicity and gender. But the findings are conflicting and should be substantiated. For example, in computer-mediated communication (Nass, Isbister, & Lee, 2000), college students matched with a same-ethnicity partner made more similar decisions, rated each other to be more attractive and trustworthy, presented more persuasive arguments, and elicited more conformity to each other’s opinions. In computer-based learning, male children in the 5th grade evaluated a computer voice more positively, perceived the voice as more credible, and showed higher levels of confidence in learning content when the voice matched their own gender than when mismatched; however, this gender similarity effect was not shown among female children (Lee, Liao, & Ryu, 2007). Also, Moreno and Flowerday (2006) found that the ethnic similarity between college students and their agents, when chosen, interfered with the students’ learning in a multimedia program. Hence, it was not clear yet if the high-school students in this study would improve their task-specific affect and performance after they worked with a similar agent more than after they worked with a dissimilar one.

2.3. Learner choice

Social cognitive theory (Bandura, 2001b) highlights individuals’ exercise of control over their environments as a determinant of their self-efficacy beliefs in daily task performance. In learning contexts, the positive relationship between student choice and intrinsic motivation toward the learning task is well established across varying age groups (Anderson & Rodin, 1989; Swann & Pittman, 1977; Zuckerman, Porac, & Latthe, 1978). Giving students choice in their learning process may increase their feeling of autonomy (Ryan & Deci, 2000), which, subsequently, enhances their motivation and engagement in the task (Flowerday & Schraw, 2000; Kohn, 1998). For example, college students who chose their reading materials rated the reading experience more favorable than did those who were given the same material (Schraw, Flowerday, & Reisetter, 1998); college students who were able to choose study time showed significantly higher affective engagement (Flowerday & Schraw, 2003). Moreover, even perceived choice without having actual choice behavior enhances adolescent learners’ intrinsic motivation to do an exercise for a longer period of time (Dwyer, 1995).

However, the effect of student choice on learning outcomes is somewhat contradictory and necessitates further investigation (Lunts, 2002). High-school students, who were able to choose a solution in computer-based learning, engaged in the task more and remembered the material more than did students who were told exactly what to do (Rainey, 1965). On the other hand, Hannahin and Sullivan (1996) allowed high-school students to adjust preferred amount of instruction in a computer-based geometry program. Matching students with their preferred program length did not improve learning outcomes and was particularly ineffective with students who preferred a low amount of instruction. As aforementioned, Moreno and Flowerday (2006) reported that college students’ choice of an ethnically similar agent functioned as an interfering factor that distracted the college students from their learning, but this distraction did not occur when a similar agent was assigned by the system. Hence, the current study included learner choice as a variable, to examine whether or not the interference effect would be consistently observed with high-school students.

3. Study purpose and hypotheses

Much of research in pedagogical agents has typically assigned a learner to a certain type of an agent and examined the learner’s reactions to the agent. This study was intended to understand if, when given a choice, high-school students performing daily school tasks would choose a same-gender agent and a same-ethnicity agent and also if the students’ own gender and ethnicity and their choice would influence their task-specific affect and performance in computer-based learning. The study had five hypotheses. First, grounded in similarity attraction, it was expected that high-school learners would choose a same gender agent or a same ethnicity agent (H1). Second, Baylor and Kim (2004) reported that college females, who learned introductory instructional design in a pedagogical-agent-based environment, perceived their agent more positively than did males. The same was true with college African-Americans, compared to Caucasians. So it was expected that high-school females and Hispanics would rate their agent as more affable than their counterparts (H2). Third, based on the positive impact of learner choice on learner affect (see Section 2.3), it was expected that high-school students who were able to choose their agent would demonstrate more positive task-specific attitudes than those who were randomly assigned to an agent (H3). Also, it was expected that the students who were able to choose their agent would demonstrate higher task-specific self-efficacy than those who were randomly assigned to an agent (H4). Lastly, given that learner choice interfered with college students’ learning (Moreno & Flowerday, 2006), it was expected that high-school students who were given an agent would learn better than those who were able to choose (H5).

4. Method

4.1. Participants

Participants were 210 Caucasian (47.1%) and Hispanic (52.9%) students in the 9th grade in three inner-city high schools located in a mountain-west state of the US. 110 students were male; 100 students were female. The average age was 15.93 (SD = .87). At login to the intervention system, the participants were randomly assigned by system to the experimental conditions (Agent-Choice or Agent-Randomly Assigned).

4.2. Materials

The intervention was computer-based algebra learning integrated with a 3D animated agent as a peer tutor, where the participants worked on the fundamentals of algebra. The environment was self-contained: the participants entered demographic information, chose or were assigned to an agent, performed the learning tasks, and took pre and posttests in the environment. The development of the environment included three phases: curriculum design, agent message design, and agent development.
4.2.1. Curriculum

The curriculum dealt with two fundamental areas in algebra: Lesson I covering combining like terms and distributive property and Lesson II covering graphing linear equations using slope and \(y \)-intercept. The lessons were developed as supplemental materials for daily use in classrooms. Each lesson included four to five sub-topic sections consisting of Review and Problem Practice. In Review, the participants reviewed algebraic concepts that they had learned from their teachers; in Problem Practice, they practiced solving problems to master the concepts. A peer agent guided a learner through the tasks, providing content-specific explanations and feedback on the learner’s performance. Fig. 1 presents example screens of the learning environment.

4.2.2. Agent messages

The peer agent proactively presented three types of messages (informational, motivational, and persuasive messages) without a learner’s request. Informational messages were content-related, including the brief overviews of the topics and feedback on a learner’s performance. Motivational messages, words of praise or encouragement, were presented upon learner performance. Persuasive messages were the statements about the benefits or advantages of learning mathematics and were presented at the beginning of subsections to build positive attitudes toward and confidence in doing mathematics.

4.2.3. Agent development

Four variations of a peer-like agent were developed using Poser 6, representing male-Caucasian, female-Caucasian, male-Hispanic, and female-Hispanic teenagers. Agent messages were prerecorded by four voice actors matched with the agent’s gender and ethnicity – for Hispanic PAs, male and female voice actors with Hispanic voice characteristics (i.e., local Mexican-Americans) were used. The agent images and the recorded voices were integrated with Mimic Pro for lip synchronization. To make the agents look natural, facial expressions, blinking, and head movements were added using parameters at Mimic Pro that kept the animation of the four agents consistent. The agent video clips were compressed and integrated into the learning environment that was delivered via the web. Fig. 2 presents the four agents used in the study.

4.3. Independent variables

There were three independent variables in the study: learner gender (male vs. female), learner ethnicity (Caucasian vs. Hispanic), and learner choice (Agent-Choice, AC vs. Agent-Randomly Assigned, ARA). At login, participants were randomly assigned, by system, either to AC where the participants were asked to choose a PA or to ARA where one of the four agents was assigned to a student randomly by system. Ninety participants (46 males and 44 females; 38 Caucasian and 52 Hispanic) were assigned to AC; 120 participants (64 males and 56 females; 61 Caucasian and 59 Hispanic) were assigned to ARA. Once an agent chosen or assigned, students were unable to change their agent.

4.4. Dependent variables

Dependent variables were learners’ choice of an agent, learners’ evaluations of agent affability, their task-specific attitudes, their task-specific self-efficacy, and their learning outcomes.

![Fig. 1. Example screens of the learning environment.](image1)

![Fig. 2. Four pedagogical agents used in the learning environment.](image2)
4.4.1. Learner choice of an agent
A total of 90 participants (46 males and 44 females; 38 Caucasian and 52 Hispanic) who were assigned to Agent-Choice were asked to choose one out of four agents, Caucasian-male, Caucasian-female, Hispanic-male, and Hispanic-female. Their choices were recorded by system.

4.4.2. Agent affability
The learners’ evaluations of the instructional quality and persona of an agent (named Chris) were referred as agent affability. Agent affability was considered meaningful in learner/agent interaction, to build social relations and trust with the agent (Laurel, 1997). Agent affability was measured at the end of the intervention, with 16 items, each scaled from 1 (Strongly disagree) to 7 (Strongly agree). The items included 1) Chris was friendly, 2) Chris was cool, 3) Chris was interesting, 4) Chris was comfortable, 5) Chris was dependable, 6) Chris was intelligent, 7) Chris was easy to understand, 8) Chris was approachable, 9) Chris was caring about me, 10) I felt like being understood by Chris, 11) Chris engaged me learning math, 12) Chris helped me learn better, 13) I’d like to learn math from Chris again, 14) Learning math will be more fun if I learn from Chris, 15) Chris was interrupting1, and 16) Chris was annoying. Item reliability was evaluated as \(\alpha = .96 \). For analysis, the mean scores were calculated.

4.4.3. Task-specific attitudes: attitudes toward learning mathematics with an agent
People’s attitudes toward an object are defined as one’s overall evaluation based on some combination of one’s affect, cognition, and behavioral tendencies toward the object (Petty, Desteno, & Rucker, 2001). Task-specific attitudes in this study referred to the combination of one’s cognitive and affective response to the task of learning mathematics in the PA-based environment. Pre and posttests were developed, derived from the Mathematics Attitude Survey (Ethington & Wolfe, 1988) and Attitudes Toward Mathematics Inventory (Tapia & Marsh, 2004). The pretest measured learners’ general attitudes toward learning mathematics and was used as a covariate in the analysis to control for the confounding effect of their prior attitudes: 1) I like math, 2) I enjoy learning math in class, 3) I would like to participate or do participate in extra math activities after school, 4) I think math is an important subject for me to study, and 5) I think math is useful in everyday life. Each item was scaled from 1 (Strongly disagree) to 7 (Strongly agree). The posttest measured students’ attitudes toward learning mathematics specifically in the PA-based environment: 1) I enjoyed solving math problems in this computer-based lesson and 2) I want to take another math lesson similar to this lesson. The items were scaled from 1 (Strongly disagree) to 7 (Strongly agree). Item reliability was evaluated as coefficient \(\alpha = .80 \) for pretest and \(\alpha = .84 \) for posttest.

4.4.4. Task-specific self-efficacy: self-efficacy in learning mathematics with an agent
Self-efficacy is defined as a person’s beliefs in their capability to successfully perform a particular task (Bandura, 1997). In this study, task-specific self-efficacy referred to others’ beliefs in their capability to successfully learn mathematics in the PA-based environment. Following Bandura’s guidelines (2001a), pre and posttests were developed, with the items scaled from 1 (Strongly disagree) to 7 (Strongly agree). The pretest measured students’ self-efficacy in learning mathematics in general and was used as a covariate in the analysis to control for the confounding effect of their prior self-efficacy: 1) I am confident in learning math, 2) I can concentrate on math learning in class, 3) I feel confident when I participate in math class activities, 4) I can achieve high grades in math, and 5) I am confident in solving math problems without help. The posttest measured students’ self-efficacy in learning mathematics specifically in the PA-based environment: 1) I was confident in learning math in this computer-based lesson, 2) I was able to concentrate on learning in this lesson, 3) I can remember the topics presented in this lesson very well, and 4) I can achieve better grades if I would learn math in this kind of lesson. Item reliability was evaluated as coefficient \(\alpha = .84 \) for pretest and \(\alpha = .86 \) for posttest.

4.4.5. Learning
Learning was measured with learners’ performances in an immediate posttest. At the beginning of each lesson, a pretest with 10 open-ended problems was implemented to assess their prior knowledge and used as a covariate. At the end of the each lesson, another set of 10 problems was implemented as a posttest. For each item in the pretest, there was a parallel item in the posttest, so the pre and posttest had different items, but assessed the same knowledge. The pre and posttest were implemented without agent presence. The mean scores were calculated for analysis.

4.5. Implementation procedure
The study was implemented as regular class activities in introductory algebra classes in two consecutive days, one lesson per day. Each lesson took one class hour (60 min). To control for implementer variations, the researchers implemented the study with the assistance of the classroom teachers. The overall procedures were as follows:

- The participants were given a brief instruction to the lesson and asked to put on headsets to listen to their agent without distraction;
- On the first day, the students entered demographic information to generate a username and password necessary to log onto the learning environment1;
- At login, they were immediately either asked to choose an agent or randomly assigned to an agent. They worked with the same agent during the entire intervention;
- They took pretests (attitudes and self-efficacy pretests on the first day and an algebra pretest on both days);
- They performed the learning tasks, which took an average of 30–35 min; and
- They took posttests (attitudes, self-efficacy, and agent affability tests on the second day; algebra tests on both days).

1 The items 15 and 16 were coded reversely.
2 On the second day, the students used the system-generated username and password to continue the learning activity.
4.6. Design and analysis

To test H1 on user choice patterns, χ²-tests of independence were conducted with 99 participants (51 males and 48 females; 43 Caucasian and 56 Hispanic) who were given an opportunity to choose a PA. For the rest of the hypotheses (H2 through H5), a 2 × 2 × 2 factorial between-subject design was used, in which the independent variables included learner gender (Male vs. Female), learner ethnicity (Caucasian vs. Hispanic), and learner choice (Agent-Choice vs. Agent-Randomly Assigned). To test H2 on agent affability, a 3-way ANOVA was conducted; to test H3, H4 and H5, a 3-way ANCOVA were conducted respectively, with a pretest set as a covariate. The significance level was set at α < .05.

5. Results

5.1. Agent choice patterns

The χ² tests of independence revealed significant differences in learners’ choice of their agent. First, there was a main effect of learner gender, χ² (1, N = 99) = 33.25, p < .001. Seventy-five percent of male learners chose a male agent; 25% chose a female agent. On the other hand, 83% of female learners chose a female agent; 17% chose a male agent. Second, there was a main effect of learner ethnicity, χ² (1, N = 99) = 56.08 p < .001. Eighty-four percent of Caucasian learners chose a Caucasian agent; 16% chose a Hispanic agent. On the other hand, 91% of Hispanic learners chose a Hispanic agent; 9% chose a Caucasian agent. The results supported H1 that high-school learners would choose a same-gender agent or a same-ethnicity agent.

5.2. Agent affability

The 3-way ANOVA indicated a significant main effect of learner gender on agent affability, F (1, 202) = 9.02, p < .005, η² = .04. Female learners (M = 78.28, SD = 23.49) rated the agent to be more affable than did male learners (M = 67.46, SD = 26.31). Also, there was a significant main effect of learner ethnicity, F (1, 202) = 31.94, p < .001, η² = .14. Hispanic learners (M = 81.83, SD = 20.93) rated the agent to be more affable than did Caucasian learners (M = 62.28, SD = 26.35). There were no interaction effects of learner gender, ethnicity, and choice. The results supported the hypothesis (H2) that female learners and ethnic-minority learners would evaluate the agent as more affable.

5.3. Task-specific attitudes

The 3-way ANCOVA revealed a significant interaction effect of student gender and agent choice, F (1, 201) = 4.35, p < .05, η² = .02. Male students in Agent-Choice (AC) (M = 8.22, SD = 2.99) showed more positive attitudes toward learning mathematics specifically in the PA-based environment than did males in Agent-Randomly Assigned (ARA) (M = 7.44, SD = 2.86). In contrast, females in ARA (M = 8.43, SD = 2.98) showed more positive attitudes toward learning mathematics in the PA-based environment than did females in AC (M = 7.68, SD = 3.20). Fig. 3 illustrates this interaction. In addition, there was a significant main effect of student ethnicity on attitudes toward learning mathematics in the PA-based environment, F (1, 201) = 5.25, p < .05, η² = .03. Hispanic students (M = 8.50, SD = 2.93) showed more positive attitudes than did the Caucasian counterparts (M = 7.28, SD = 2.97). The results supported H3 partially, in that only males demonstrated more positive task-specific attitudes after working with an agent of their choice than after working with an assigned agent.

5.4. Task-specific self-efficacy

The 3-way ANCOVA revealed no significant main effect or interaction effect of learner gender, learner ethnicity, and agent choice on students’ self-efficacy in learning mathematics in the PA-based environment. The results did not support the hypothesis that the students who were able to choose their agent would demonstrate higher task-specific self-efficacy than those who were given an agent (H4). However, a similar interaction trend, as in task-specific attitudes, was observed: male students in AC demonstrated higher task-specific self-efficacy than did males in ARA whereas females in ARA demonstrated higher task-specific self-efficacy than did females in AC (p = .08).

Fig. 3. Interaction of learner choice and gender on attitudes.
6. Discussion

This study was intended to understand how the similarity of learner/agent attributes would influence the instructional effectiveness of a pedagogical agent (PA) and to provide implications for the design of an efficacious peer agent. Among a number of personal attributes, student gender and ethnicity were chosen with the awareness of equity issues in mathematics education in the United States. The authors expected that the pedagogical-agent-based learning would provide females and ethnic minorities (here, Hispanics) with positive learning experiences, enhancing their task-specific attitudes and self-efficacy. Also, given the contradictory findings on the effectiveness of learner choice, the students’ choice of their agent was examined as a variable. Therefore, unlike many agent studies that examined students’ perceptive reactions to an assigned agent (Mayer, Johnson, Shaw, & Sandhu, 2006; Plant, Baylor, Doerr, & Rosenberg-Kima, 2009; Reategui & Campbell, 2008), the current study investigated the effectiveness of a pedagogical agent at a more practical level by considering learner characteristics as an important factor and examining task-specific affect and performance in daily school tasks. Overall, the findings support the social affordance of pedagogical agents for teenage students. That is, the high-school students in the study responded to their agent socially, in that they chose a similar looking agent over dissimilar one. Their gender and ethnicity were factors determining their evaluations of agent affability. More important, their being able to choose their agent and their gender interacted to influence and their task-specific attitudes toward agent-based mathematics learning. However, the impact of those variables was not sufficiently strong to influence differential learning gains.

6.1. Hypothesis 1 on student choice of an agent

The first hypothesis stated that high-school students would choose a same-gender agent and a same-ethnicity agent. Indeed, male students chose a male agent and females chose a female agent significantly more frequently than a different-gender agent. Also, Caucasian students chose a Caucasian agent and Hispanic students chose a Hispanic agent significantly more frequently than a different-ethnicity agent. This finding is distinct from previous studies indicating that the ethnic similarity attraction was observed only among students of color (Moreno & Flowerday, 2006) and that African–American college students were more aware of their agent’s ethnicity, compared to their Caucasian counterparts (Baylor & Kim, 2003). The current study confirms that the attraction exists in learners’ choice behaviors, regardless of learner gender and ethnicity, at least for teenage students.

6.2. Hypothesis 2 on students' evaluations of agent affability

The second hypothesis stated that female students and Hispanic students would rate their agent as more affable than their counterparts. The results supported this expectation. The teenage females in the study rated their agent significantly more affable than did males; Hispanic students rated their agent significantly more affable than did Caucasians. To understand the reasons, the authors referred to literature in social psychology, which indicated that females, in general, valued relationships and connections with others greater than males and constructed their identities as a result of the interpersonal relationships they created and maintained (Gilligan, 1993). Likewise, in classrooms, females seem to be more aware of social context than males (Sandler et al., 1996); at computing, females prefer instructional programs that support frequent interactions and direct verbal feedback (Arroyo, Murray, Woolf, & Beal, 2003; Cooper & Weaver, 2003). Hispanic students’ more positive evaluations of agent affability can be explained in a similar perspective. In classrooms, Latino students showed high engagement in learning when the environment supported interactions and teamwork involving verbal encouragement and active responses (Gay, 2000; Uekawa, Borman, & Lee, 2007). These inclinations of females and Hispanic students toward relationship building and social interaction seemingly induced them to evaluate their agent as affable more than did males and Caucasians. Another interpretation might be related to equity issues in mathematics education in the US. Females and some ethnic-minority students are lacking

Table 1
Results summarized by dependent variables.

<table>
<thead>
<tr>
<th></th>
<th>Agent affability</th>
<th>Task-specific attitudes</th>
<th>Task-specific self-efficacy</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>η^2</td>
<td>F</td>
<td>η^2</td>
</tr>
<tr>
<td>Learner gender (G)</td>
<td>9.02</td>
<td>.04</td>
<td>.79</td>
<td>.00</td>
</tr>
<tr>
<td>Learner ethnicity (E)</td>
<td>31.94</td>
<td>.14</td>
<td>5.25</td>
<td>.03</td>
</tr>
<tr>
<td>Agent-Choice (C)</td>
<td>.20</td>
<td>.00</td>
<td>.17</td>
<td>.00</td>
</tr>
<tr>
<td>G x E</td>
<td>.86</td>
<td>.00</td>
<td>.22</td>
<td>.00</td>
</tr>
<tr>
<td>G x C</td>
<td>.38</td>
<td>.00</td>
<td>4.35</td>
<td>.02</td>
</tr>
<tr>
<td>E x C</td>
<td>.15</td>
<td>.00</td>
<td>1.21</td>
<td>.00</td>
</tr>
<tr>
<td>G x E x C</td>
<td>.01</td>
<td>.00</td>
<td>1.68</td>
<td>.01</td>
</tr>
</tbody>
</table>

Note: Significance of F values is identified by * at the .05 level, by ** at the .01, and by *** at the .001 level. *p – .08.
motivation toward and confidence in mathematics learning (Herbert & Stipek, 2005; Lee, 2004; Secada, 1992). As a reason, the dominant culture of mathematics classrooms is often said to be less favorable for those students. While working with their agent, the females and Hispanics in the study might feel more comfortable with the agent’s individualized explanations and free of embarrassment even when making a mistake.

6.3. Hypotheses 3 and 4 on task-specific attitudes and self-efficacy

It was expected that high-school students who were able to choose their agent would demonstrate more positive task-specific attitudes (H3) and higher self-efficacy (H4) than those who were assigned to an agent. The results partially supported the hypothesis on attitudes, in that only males showed significantly more positive attitudes toward the agent-based mathematics learning when given a choice. In contrast, the opposite trend was observed for females, who showed more positive attitudes when assigned to an agent without a choice. The results might be explained in terms of gender difference. The literature in gender difference shows that males usually have stronger sense of control than females (Ross & Mirowsky, 2002). That is, agent choice, as a form of a learner’s control over the task environment, was favored by high-school males more than by females. Another interpretation would be that, to be able to choose or take advantage of choice, a learner should have a certain level of confidence in a task domain. However, females are in general considered lacking confidence in mathematics learning (Herbert & Stipek, 2005). This lack of confidence in the task domain might lead the females to feeling less comfortable in choosing an agent. An analogy was found in a study in human/computer interaction that female college students evaluated the validity of the information presented by a computer differentially depending on the topic areas (Reeves & Nass, 1996). They became more critical about a more familiar topic, cosmetic-related information than about the sports-related information. To conclude, learner choice should be used judiciously with the consideration of learner characteristics (Hannaﬁn & Sullivan, 1996). Prudent use of learner choice may help avoid frustration and distraction from task performance (Iyengar & Lepper, 2000).

6.4. Hypothesis 5 on learning outcomes

This hypothesis stated that the learners who were given an agent would achieve greater learning than those who were able to choose. The results did not support the hypothesis; there was no main or interaction effect of user choice, gender, and ethnicity. Instead, the participants consistently achieved their learning after working in the PA-based environment, regardless of their differential evaluations of agent afﬁliation and attitudes toward the learning task. In contrast to Moreno and Flowerday’s (2006) study, this study did not find the negative interaction effect of learner choice and ethnicity on learning.

6.5. Implications for design

The findings of the study have implications for the design of effective applications using pedagogical agents, especially for teenage learners. First, the use of a human-like agent can make educational computing social and natural. For example, a similar-looking agent might be able to serve as a role model for teenage learners and attract them to a domain not typically popular but necessary to be pursued, e.g., inviting females and some ethnic minorities to the domains of science and engineering (Plant et al., 2009). While working with the agent, those students are likely to better identify themselves with the domains (Kim & Baylor, 2007). Also, this could help support learning performance disregarding gender because it is known from previous research that males usually perform better in a more technological learning environment, yielding that females might have a smaller bias towards a rather technical learning material and different visual input preferences (Holzinger, Kickmeier-Rust, Wasserteurer, & Hessinger, 2009). Second, in interaction design, user characteristics (e.g., gender) should be an important consideration to determine the amount of control shared between the user and the system. Third, when an application is geared toward improving users’ cognitive tasks, the presence of an agent might not be warranted. However, for applications that are focused on users’ affect and choice (e.g., promoting ideas and products), agent presence can be a viable option in the design. These applications might take advantage of the illusion of social relations between a learner and an agent (Johnston & Thomas, 1995).

Lastly, the study has some limitations. The study was implemented for a relatively short period of time. Due to the limited cell size, the study was not able to contrast the matched and mismatched gender and ethnicity between a learner and an agent. Subsequent research is warranted to overcome the limitations and confirm the findings. To conclude, the findings of the study are in line with a trend in agent research. Petrakou argues that, as learners are exposed to agents more and more, new social rules may emerge (Petrakou, 2010). Therefore, future research in agents should place more emphasis on the agent’s social intelligence (Wang et al., 2008) rather than focusing on the media.

References

